1,360 research outputs found

    Structural Disruption of an Adenosine-Binding DNA Aptamer on Graphene: Implications for Aptasensor Design

    Get PDF
    YesWe report on the predicted structural disruption of an adenosine-binding DNA aptamer adsorbed via noncovalent interactions on aqueous graphene. The use of surface-adsorbed biorecognition elements on device substrates is needed for integration in nanofluidic sensing platforms. Upon analyte binding, the conformational change in the adsorbed aptamer may perturb the surface properties, which is essential for the signal generation mechanism in the sensor. However, at present, these graphene-adsorbed aptamer structure(s) are unknown, and are challenging to experimentally elucidate. Here we use molecular dynamics simulations to investigate the structure and analyte-binding properties of this aptamer, in the presence and absence of adenosine, both free in solution and adsorbed at the aqueous graphene interface. We predict this aptamer to support a variety of stable binding modes, with direct base−graphene contact arising from regions located in the terminal bases, the centrally located binding pockets, and the distal loop region. Considerable retention of the in-solution aptamer structure in the adsorbed state indicates that strong intra-aptamer interactions compete with the graphene−aptamer interactions. However, in some adsorbed configurations the analyte adenosines detach from the binding pockets, facilitated by strong adenosine−graphene interactions

    Elucidating the mechanisms of nanodiamond-promoted structural disruption of crystallised lipid

    Get PDF
    yesThe removal or structural disruption of crystallised lipid is a pivotal but energy-intensive step in a wide range of industrial and biological processes. Strategies to disrupt the structure of crystallised lipid in aqueous solution at lower temperatures are much needed, where nanoparticle-based strategies show enormous promise. Using the aqueous tristearin bilayer as a model for crystallised lipid, we demonstrate that the synergistic use of surfactant and detonation nanodiamonds can depress the onset temperature at which disruption of the crystallised lipid structure occurs. Our simulations reveal the molecular-scale mechanisms by which this disruption takes place, indicating that the nanodiamonds serve a dual purpose. First, the nanodiamonds are predicted to facilitate delivery of surfactant to the lipid/water interface, and second, nanodiamond adsorption acts to roughen the lipid/water interface, enhancing ingress of surfactant into the bilayer. We find the balance of the hydrophobic surface area of the nanodiamond and the nanodiamond surface charge density to be a key determinant of the effectiveness of using nanodiamonds to facilitate lipid disruption. For the nanodiamond size considered here, we identify a moderate surface charge density, that ensures the nanodiamonds are neither too hydrophobic nor too hydrophilic, to be optimal

    Renormalization of composite operators

    Get PDF
    The blocked composite operators are defined in the one-component Euclidean scalar field theory, and shown to generate a linear transformation of the operators, the operator mixing. This transformation allows us to introduce the parallel transport of the operators along the RG trajectory. The connection on this one-dimensional manifold governs the scale evolution of the operator mixing. It is shown that the solution of the eigenvalue problem of the connection gives the various scaling regimes and the relevant operators there. The relation to perturbative renormalization is also discussed in the framework of the Ï•3\phi^3 theory in dimension d=6d=6.Comment: 24 pages, revtex (accepted by Phys. Rev. D), changes in introduction and summar

    First steps in the development of a water temperature model framework for refining the ecological Reserve in South African rivers

    Get PDF
    Ecological Reserve determination for rivers in South Africa presently does not include a water temperature component, in spite of its importance in determining species distribution patterns. To achieve this requires an understanding of how lotic thermographs from South African rivers differ from northern hemisphere rivers, to avoid mismanaging rivers based on incorrect regional assumptions. Hourly water temperatures from 20 sites in four river systems, representing a range of latitudes, altitudes and stream orders, were assessed using a range of metrics. These data were analysed using principal component analyses and multiple linear regressions to understand what variables a water temperature model for use in ecoregions within South Africa should include. While temperature data are generally lacking in low- and higher-order South African rivers, data suggest that South African rivers are warmer than northern hemisphere rivers. Water temperatures could be grouped into cool, warm and intermediate types. Based on temperature time series analyses, this paper argues that a suitable water-temperature model for use in ecological Reserve determinations should be dynamic, include flow and air temperature variables, and be adaptive through a heat exchange coefficient term. The inclusion of water temperature in the determination and management of river ecological Reserves would allow for more holistic application of the National Water Act’s ecological management provisions. Water temperature guidelines added to the ecological Reserve could be integrated into heuristic aquatic monitoring programmes within priority areas identified in regional conservation plans.Keywords: water temperatures, conservation planning, water temperature modelling, managemen

    Spontaneous Breaking of N=2 Global Supersymmetry

    Get PDF
    We study spontaneous supersymmetry breaking in N=2 globally supersymmetric theories describing a system of abelian vector multiplets. We find that the most general form of the action admits, in addition to the usual Fayet-Iliopoulos term, a magnetic Fayet-Iliopoulos term for the auxiliary components of dual vector multiplets. In a generic case, N=2 supersymmetry is broken down spontaneously to N=1. In some cases however, the scalar potential can drive the theory towards a N=2 supersymmetric ground state where massless dyons condense in the vacuum.Comment: 12 pages, LaTe

    Tristearin bilayers: structure of the aqueous interface and stability in the presence of surfactants

    Get PDF
    YesWe report results of atomistic molecular dynamics simulations of an industrially-relevant, exemplar triacylglycerol (TAG), namely tristearin (TS), under aqueous conditions, at different temperatures and in the presence of an anionic surfactant, sodium dodecylbenzene sulphonate (SDBS). We predict the TS bilayers to be stable and in a gel phase at temperatures of 350 K and below. At 370 K the lipid bilayer was able to melt, but does not feature a stable liquid–crystalline phase bilayer at this elevated temperature. We also predict the structural characteristics of TS bilayers in the presence of SDBS molecules under aqueous conditions, where surfactant molecules are found to spontaneously insert into the TS bilayers. We model TS bilayers containing different amounts of SDBS, with the presence of SDBS imparting only a moderate effect on the structure of the system. Our study represents the first step in applying atomistic molecular dynamics simulations to the investigation of TAG-aqueous interfaces. Our results suggest that the CHARMM36 force-field appears suitable for the simulation of such systems, although the phase behaviour of the system may be shifted to lower temperatures than is the case for the actual system. Our findings provide a foundation for further simulation studies of the TS-aqueous interface.vesk

    What makes a good graphene-binding peptide? Adsorption of amino acids and peptides at aqueous graphene interfaces

    Get PDF
    YesInvestigation of the non-covalent interaction of biomolecules with aqueous graphene interfaces is a rapidly expanding area. However, reliable exploitation of these interfaces in many applications requires that the links between the sequence and binding of the adsorbed peptide structures be clearly established. Molecular dynamics (MD) simulations can play a key role in elucidating the conformational ensemble of peptides adsorbed at graphene interfaces, helping to elucidate these rules in partnership with experimental characterisation. We apply our recently-developed polarisable force-field for biomolecule–graphene interfaces, GRAPPA, in partnership with advanced simulation approaches, to probe the adsorption behaviour of peptides at aqueous graphene. First we determine the free energy of adsorption of all twenty naturally occurring amino acids (AAs) via metadynamics simulations, providing a benchmark for interpreting peptide–graphene adsorption studies. From these free energies, we find that strong-binding amino acids have flat and/or compact side chain groups, and we relate this behaviour to the interfacial solvent structuring. Second, we apply replica exchange with solute tempering simulations to efficiently and widely sample the conformational ensemble of two experimentally-characterised peptide sequences, P1 and its alanine mutant P1A3, in solution and adsorbed on graphene. For P1 we find a significant minority of the conformational ensemble possesses a helical structure, both in solution and when adsorbed, while P1A3 features mostly extended, random-coil conformations. In solution this helical P1 configuration is stabilised through favourable intra-peptide interactions, while the adsorbed structure is stabilised via interaction of four strongly-binding residues, identified from our metadynamics simulations, with the aqueous graphene interface. Our findings rationalise the performance of the P1 sequence as a known graphene binder.vesk

    Distinct differences in peptide adsorption on palladium and gold: introducing a polarizable model for Pd(111)

    Get PDF
    YesMaterials-binding peptides offer promising routes to the production of tailored Pd nanomaterials in aqueous media, enabling the optimization of catalytic properties. However, the atomic-scale details needed to make these advances are relatively scarce and challenging to obtain. Molecular simulations can provide key insights into the structure of peptides adsorbed at the aqueous Pd interface, provided that the force-field can appropriately capture the relevant bio-interface interactions. Here, we introduce and apply a new polarizable force field, PdP-CHARMM, for the simulation of biomolecule–Pd binding under aqueous conditions. PdP-CHARMM was parametrized with density functional theory (DFT) calculations, using a process compatible with similar polarizable force-fields created for Ag and Au surfaces, ultimately enabling a direct comparison of peptide binding modes across these metal substrates. As part of our process for developing PdP-CHARMM, we provide an extensive study of the performance of ten different dispersion-inclusive DFT functionals in recovering biomolecule–Pd(111) binding. We use the functional with best all-round performance to create PdP-CHARMM.We then employ PdP-CHARMM and metadynamics simulations to estimate the adsorption free energy for a range of amino acids at the aqueous Pd(111) interface. Our findings suggest that only His and Met favor direct contact with the Pd substrate, which we attribute to a remarkably robust interfacial solvation layering. Replica-exchange with solute tempering molecular dynamics simulations of two experimentally-identified Pd-binding peptides also indicate surface contact to be chiefly mediated by His and Met residues at aqueous Pd(111). Adsorption of these two peptides was also predicted for the Au(111) interface, revealing distinct differences in both the solvation structure and modes of peptide adsorption at the Au and Pd interfaces. We propose that this sharp contrast in peptide binding is largely due to the differences in interfacial solvent structuring.Air Force Office for Scientfi c Research (Grant #FA9550-12-1-0226

    Non-covalent adsorption of amino acid analogues on noble-metal nanoparticles: influence of edges and vertices

    Get PDF
    YesThe operation of many nanostructured biomolecular sensors and catalysts critically hinges on the manipulation of non-covalent adsorption of biomolecules on unfunctionalised noble-metal nanoparticles (NMNPs). Molecular-level structural details of the aqueous biomolecule/NMNP interface are pivotal to the successful realisation of these technologies, but such experimental data are currently scarce and challenging to obtain. Molecular simulations can generate these details, but are limited by the assumption of non-preferential adsorption to NMNP features. Here, via first principles calculations using a vdW-DF functional, and based on nanoscale sized NMNPs, we demonstrate that adsorption preferences to NP features vary with adsorbate chemistry. These results show a clear distinction between hydrocarbons, that prefer adsorption to facets over edges/vertices, over heteroatomic molecules that favour adsorption onto vertices over facets. Our data indicate the inability of widely used force-fields to correctly capture the adsorption of biomolecules onto NMNP surfaces under aqueous conditions. Our findings introduce a rational basis for the development of new force-fields that will reliably capture these phenomena
    • …
    corecore